Antibacterial toilet soap — Specification — Part 1: Solid
Compliance with this standard does not, of itself confer immunity from legal obligations

A Uganda Standard does not purport to include all necessary provisions of a contract. Users are responsible for its correct application.
National foreword

Uganda National Bureau of Standards (UNBS) is a parastatal under the Ministry of Tourism, Trade and Industry established under Cap 327, of the Laws of Uganda. UNBS is mandated to co-ordinate the elaboration of standards and is
(a) a member of International Organisation for Standardisation (ISO) and
(b) a contact point for the WHO/FAO Codex Alimentarius Commission on Food Standards, and
(c) the National Enquiry Point on TBT/SPS Agreements of the World Trade Organisation (WTO).

The work of preparing Uganda Standards is carried out through Technical Committees. A Technical Committee is established to deliberate on standards in a given field or area and consists of representatives of consumers, traders, academicians, manufacturers, government and other stakeholders.

Draft Uganda Standards adopted by the Technical Committee are widely circulated to stakeholders and the general public for comments. The committee reviews the comments before recommending the draft standards for approval and declaration as Uganda Standards by the National Standards Council.

This standard cancels and replaces US EAS 766:2011 which has been technically revised.

Wherever the words, "East African Standard" appear, they should be replaced by "Uganda Standard."
EAST AFRICAN STANDARD

Antibacterial toilet soap — Specification — Part 1: Solid

EAST AFRICAN COMMUNITY
Copyright notice

This EAC document is copyright-protected by EAC. While the reproduction of this document by participants in the EAC standards development process is permitted without prior permission from EAC, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from EAC.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to EAC’s member body in the country of the requester:

© East African Community 2013 — All rights reserved
East African Community
P.O.Box 1096
Arusha
Tanzania
Tel: 255 27 2504253/8
Fax: 255 27 2504481/2504255
E-mail: eac@eachq.org
Web: www.eac-quality.net

Reproduction for sales purposes may be subject to royalty payments or a licensing agreement. Violators may be persecuted
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>1 Scope</td>
<td>1</td>
</tr>
<tr>
<td>2 Normative references</td>
<td>1</td>
</tr>
<tr>
<td>3 Terms and definitions</td>
<td>1</td>
</tr>
<tr>
<td>4 Requirements</td>
<td>2</td>
</tr>
<tr>
<td>4.1 General requirements</td>
<td>2</td>
</tr>
<tr>
<td>4.2 Specific quality requirements</td>
<td>2</td>
</tr>
<tr>
<td>5 Packaging and marking</td>
<td>3</td>
</tr>
<tr>
<td>5.1 Packaging</td>
<td>3</td>
</tr>
<tr>
<td>5.2 Marking</td>
<td>3</td>
</tr>
<tr>
<td>6 Sampling</td>
<td>3</td>
</tr>
<tr>
<td>7 Criteria for conformity</td>
<td>3</td>
</tr>
<tr>
<td>Annex A (normative) Permitted antibacterial agents</td>
<td>4</td>
</tr>
<tr>
<td>Annex B (normative) Determination of Trichlorocarbanilide (TCC) and Triclosan (TCN) in soaps by HPLC</td>
<td>5</td>
</tr>
<tr>
<td>B.1 Principle</td>
<td>5</td>
</tr>
<tr>
<td>B.2 Normal phase HPLC</td>
<td>5</td>
</tr>
<tr>
<td>B.2.1 Reagents</td>
<td>5</td>
</tr>
<tr>
<td>B.2.2 Apparatus</td>
<td>5</td>
</tr>
<tr>
<td>B.2.3 Procedure</td>
<td>6</td>
</tr>
<tr>
<td>B.2.4 Calculation</td>
<td>6</td>
</tr>
<tr>
<td>B.3 Reverse phase</td>
<td>7</td>
</tr>
<tr>
<td>B.3.1 Reagents</td>
<td>7</td>
</tr>
<tr>
<td>B.3.2 Apparatus</td>
<td>7</td>
</tr>
<tr>
<td>B.3.3 Procedure</td>
<td>7</td>
</tr>
<tr>
<td>B.3.4 Calculations</td>
<td>8</td>
</tr>
<tr>
<td>Annex C (normative) Determination of chloroaniline</td>
<td>9</td>
</tr>
<tr>
<td>C.1 Principle</td>
<td>9</td>
</tr>
<tr>
<td>C.2 Safety precautions</td>
<td>9</td>
</tr>
<tr>
<td>C.3 Reagents</td>
<td>9</td>
</tr>
<tr>
<td>C.4 Apparatus</td>
<td>10</td>
</tr>
<tr>
<td>C.5 Procedure</td>
<td>10</td>
</tr>
<tr>
<td>C.6 Determination of chloroanilines</td>
<td>11</td>
</tr>
<tr>
<td>C.7 Calculations</td>
<td>11</td>
</tr>
<tr>
<td>Annex D (normative) Sampling</td>
<td>13</td>
</tr>
<tr>
<td>D.1 Procedure</td>
<td>13</td>
</tr>
<tr>
<td>D.2 Preparation of test samples</td>
<td>13</td>
</tr>
<tr>
<td>D.2.1 Composite sample</td>
<td>13</td>
</tr>
<tr>
<td>D.2.2 Samples for testing</td>
<td>13</td>
</tr>
</tbody>
</table>
Foreword

Development of the East African Standards has been necessitated by the need for harmonizing requirements governing quality of products and services in the East African Community. It is envisaged that through harmonized standardization, trade barriers that are encountered when goods and services are exchanged within the Community will be removed.

In order to achieve this objective, the Community established an East African Standards Committee mandated to develop and issue East African Standards.

The Committee is composed of representatives of the National Standards Bodies in Partner States, together with the representatives from the private sectors and consumer organizations. Draft East African Standards are circulated to stakeholders through the National Standards Bodies in the Partner States. The comments received are discussed and incorporated before finalization of standards, in accordance with the procedures of the Community.

East African Standards are subject to review, to keep pace with technological advances. Users of the East African Standards are therefore expected to ensure that they always have the latest versions of the standards they are implementing.

EAS 766-1 was prepared by Technical Committee EAS/TC 074, Surface active agents.

EAS 766 consists of the following parts, under the general title Antibacterial toilet soap — Specification —:

— Part 2: Liquid.
Introduction

Human skin provides a favourable environment for the existence and multiplication of a variety of microbes. The conventional toilet soap washes away the germs but does not kill them. The function of an antibacterial or antiseptic toilet soap is not only to clean the skin, but also to reduce drastically the bacterial count on the skin. This prevents skin infections and perspiration odour caused by the decomposition of perspiration by bacteria.

The antibacterial toilet soap is specially effective against *staphylococcus* and similar bacteria which have the habit of residing in the under layers of skin. The antibacterials are substantive to the skin and this tackles the microbes between two washes. Antibacterial toilet soaps shall be used regularly to be effective.

In the present edition hexachloroprene has not been permitted to use as antibacterial agent. Trichlorocarcanilide (TCC) on heating decomposes to chloroanilines which can be harmful to skin and hence the limit and method for determination of chloroanilene is incorporated.
FOR COMMENTS ONLY
Antibacterial toilet soap — Specification — Part 1: Solid

1 Scope

This East African Standard specifies the requirements and methods of sampling and test for solid antibacterial toilet soap.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

EAS 127, Synthetic laundry detergents for household use — Specification

EAS 377-1, Cosmetics and cosmetics products — Part 1: List of substances prohibited in cosmetic products

EAS 377-2, Cosmetics and cosmetics products — Part 2: List of substances which cosmetic products must not contain except subject to restrictions laid down

EAS 377-3, Cosmetics and cosmetics products — Part 3: List of colourants allowed in cosmetic products

EAS 377-4, Cosmetics and cosmetics products — Part 4: List of preservatives allowed in cosmetic products

EAS 377-5, Cosmetics and cosmetics products — Part 5: Use of UV filters in cosmetic products

EAS 794, Determination of the microbial inhibition of cosmetic soap bars and liquid hand and body washes — Test method

ISO 456, Surface active agents — Analysis of soaps — Determination of free caustic alkali

ISO 685, Analysis of soap — Determination of alkali content and total fatty matter content

ISO 673, Analysis of soap — Determination of matter insoluble in ethanol

ISO 862, Surface active agents — Vocabulary

3 Terms and definitions

For the purposes of this standard, the terms and definitions given in ISO 862.
4 Requirements

4.1 General requirements

4.1.1 Solid antibacterial toilet soap shall be, thoroughly saponified, milled soap or homogenized soap or both, white or coloured, perfumed, and compressed in the form of firm and smooth cakes, tablets or bars and shall possess good cleaning, lathering and antibacterial properties.

4.1.2 Perfume, moisture, normal colouring matters and preservatives acceptable in toilet soaps may be added.

4.1.3 The solid antibacterial soap shall contain permitted antibacterial agent in accordance with Annex A.

4.1.4 The solid antibacterial soap shall pass the antibacterial activity test when determined by the method given in EAS 794.

4.1.5 All the substances used in the solid antibacterial soap shall comply with the requirements of all parts of EAS 377.

4.1.6 Solid antibacterial toilet soap shall pass the test for dermatological safety.

4.2 Specific quality requirements

Solid antibacterial toilet soap shall comply with the specific quality requirements specified in Table 1.

Table 1 — Specific quality requirement for solid antibacterial toilet soap

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>Requirement</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>Total fatty matter, % by mass, min</td>
<td>76.0</td>
<td>ISO 685</td>
</tr>
<tr>
<td>ii.</td>
<td>Free caustic alkali, as sodium hydroxide (NaOH), % by mass, max</td>
<td>0.1</td>
<td>ISO 456</td>
</tr>
<tr>
<td>iii.</td>
<td>Free carbonated alkali, as sodium carbonate (Na₂CO₃), % by mass, max</td>
<td>1.0</td>
<td>ISO 685</td>
</tr>
<tr>
<td>iv.</td>
<td>Matter insoluble in alcohol, % by mass, max</td>
<td>2.5</td>
<td>ISO 673</td>
</tr>
<tr>
<td>v.</td>
<td>Antibacterial agent Triclosan (TCN) and Trichlorocarbanilide (TCC), % by mass, max</td>
<td>1</td>
<td>either singly or in combination</td>
</tr>
</tbody>
</table>

vi. Chloroaniline content, ppm, max | 10 | Annex C |

vii. Synthetic detergent | Shall be absent | EAS 127 |

viii. Phosphate | Shall be absent | EAS 127 |

NOTE 1 Solid antibacterial Toilet soap is liable to lose moisture on storage. The results of analysis in respect to free caustic alkali, free carbonated alkali and matter insoluble in alcohol should be recalculated in relation to the minimum specified total fatty matter by means of the following equation:

\[
\text{Corrected result} = \frac{\text{actual result} \times \text{minimum specified total fatty matter}}{\text{actual total fatty matter}}
\]

The corrected results should be used to determine whether the product is up to standard.

NOTE 2 Trichlorocarbanilide (TCC) is not heat stable and decomposes into chloro anilines on prolonged heating above 60 °C. If TCC is used in soap, the manufacturer should take care that such soap is not subjected to temperature above 60°C during the entire manufacturing process or during storage.
5 Packaging and marking

5.1 Packaging
The product shall be packed in a suitable, well-closed container, to protect the integrity of the product during transportation and sale.

5.2 Marking
The packages shall be securely closed and marked with the following particulars:

a) name of the product as “antibacterial toilet soap”;
b) manufacturer’s name and physical address;
 NOTE The name, physical address of the distributor/supplier and trade mark may be added as required.
c) net content;
d) batch number or lot number;
e) date of manufacture and best before date;
f) Total Fatty Matter content (TFM);
g) country of origin;
h) the antibacterial agent used and its level; and
i) list of ingredients in descending order of quantity

6 Sampling
Sampling shall be done in accordance with Annex D.

7 Criteria for conformity
The lot shall be deemed to comply with the requirements of this standard if, after inspection and testing, the requirements of Clause 4 and 5 are satisfied.
Annex A
(normative)

Permitted antibacterial agents

The following is the list of antibacterial agents used generally in antibacterial soap:

a) Triclosan (TCN);
b) Trichlorocarbanilide (TCC);
c) Zinc oxide;
d) Chloroxylenols;
e) Plant extracts;
f) Any other internationally accepted antibacterial agent.
Annex B
(normative)

Determination of Trichlorocarbanilide (TCC) and Triclosan (TCN) in soaps by HPLC

B.1 Principle

TCC and TCN are antibacterial agents, which are separated from other components in soap by normal phase or reverse phase liquid chromatography, detected spectrophotometrically and quantified by comparison with standard TCC and TCN. The method can estimate as low as 1 ppm of the above compounds:

Procedures for both normal and reverse HPLC has been described and provide the option to use either method whichever is available to the users. Both methods are comparable.

B.2 Normal phase HPLC

B.2.1 Reagents

B.2.1.1 Iso-octane, HPLC grade
B.2.1.2 Iso-propanol (2-propanol), HPLC grade
B.2.1.3 Hexane, HPLC grade
B.2.1.4 Standard TCC, 99 % pure
B.2.1.5 Standard TCN, 99 % pure

B.2.2 Apparatus

B.2.2.1 High Performance Liquid Chromatograph consisting of a pump, a sample injector of fixed volume with UV detector having variable wavelengths and a recorder
B.2.2.2 Standard volumetric flasks
B.2.2.3 Pipettes
B.2.2.4 Magnetic stirrer
B.2.2.5 Millipore filter apparatus with 0.5 micron filter
B.2.2.6 Column, comprising:
 a) Silica column, stainless steel 25 cm x 0.46 cm packed with Normal phase-silica 5 micron (Lichrosorb Si -60); or
 b) Cyano column, stainless steel 25 cm x 0.40 cm packed with (Lichrospher 100) cyano 5 micron.

NOTE Either, of the above columns can be used depending on the availability.
B.2.2.7 Mobile phase:

a) for silica column, transfer 20 mL of iso-propanol into a 500-mL volumetric flask and make up to mark with iso-octane and mix well. Assemble millipore filter apparatus and filter the solvent system prior to use; and

b) for cyano column, transfer 50 mL of HPLC grade iso-propanol (2-propanol) into a 500-mL volumetric flask, fill up to the mark with hexane and mix well. Assemble millipore filter apparatus and filter the solvent system prior to use.

B.2.2.8 HPLC conditions which include the following:

a) Detector wavelength flow rate: 280 nm;

b) Flow rate: 0.5 mL/min;

c) Injection volume: 20 µL;

d) Retention time;

e) Silica column:
 • TCN - 7.5 min; and
 • TCC - 19.2 min;

f) Cyano column:
 • TCN - 4.0 min; and
 • TCC - 7.5 min.

B.2.3 Procedure

B.2.3.1 Standard preparation (see note under B.3.4)

Weigh accurately 25 mg of Triclosan (TCN) and 25 mg of TCC into a 100-mL volumetric flask and make up to volume with the mobile phase and mix well. Pipette 1.0 mL of this solution in a 50 mL volumetric flask and dilute with mobile phase. Final concentration of TCC and TCN is 250 µg/50 mL (5.0 ppm).

B.2.3.2 Sample preparation

Weigh accurately 1 g of homogenized sample into a 100-mL standard flask, and dilute to the mark with mobile phase. Pipette 10 mL of the supernatant liquid to a 50-mL volumetric flask, dilute with mobile phase, to the mark, and filter through 0.45 µm filter.

B.2.3.3 Chromatography

Equilibrate the column, maintained at a temperature of 30 °C, with the mobile phase with a flow rate of 0.5 mL/min for iso-octane - iso-propanol mobile phase and 1.0 mL/min for Hexane - iso-propanol mobile phase for 30 min. Set the wavelength at 280 nm. Inject 20 µL of standard solution and then sample solutions.

Measure area of the peaks of respective retention time for standard and sample.

B.2.4 Calculation

TCN shall be expressed as follows:
\[
\text{TCN, percent by mass} = \frac{\text{Area of sample for TCN} \times \text{Concentration of standard TCN}}{\text{Area of standard TCN} \times \text{Concentration of sample}} \times 100
\]

\[
\text{TCC, percent by mass} = \frac{\text{Area of sample for TCC} \times \text{Concentration of standard TCC}}{\text{Area of standard TCC} \times \text{Concentration of sample}} \times 100
\]

B.3 Reverse phase

B.3.1 Reagents

B.3.1.1 Methanol, HPLC grade

B.3.1.2 Sodium Dihydrogen Phosphate Monohydrate, chemical grade

B.3.1.3 Standard TCC

B.3.1.4 Standard TCN (TCS)

B.3.2 Apparatus

B.3.2.1 Column

B.3.2.1.1 Octyldimethylsilyl (C-DB)

B.3.2.1.2 Supercosil LC-8-DB, 15 cm x 4.6 mm, 5 micron

B.3.2.2 Mobile phase

MeOH/0.01 M Phosphate buffer 62:38 v/v

0.01 M Phosphate buffer: Dissolve 1.38 g sodium dihydrogen phosphate monohydrate in 1 000 mL of distilled water. Prepare to pH 3.0 by 10% phosphate solutions.

B.3.3 Procedure

B.3.3.1 Standard preparation (see Note under B.3.4)

B.3.3.1.1 Weigh accurately about 90 mg of TCN. Dissolve in methanol and make up to 1 000 mL volumetric flask with methanol.

B.3.3.1.2 Weigh about 110 mg of TCC, dissolve well with methanol, and make up the volume to 1 000 mL.

B.3.3.1.3 Accurately pipette 10 mL of the solution prepared in B.3.3.1.1 into the volumetric flask containing TCC (B.3.3.1.2). And make up to the volume with methanol. Then accurately pipette 5 ml of the solution into a 50-mL volumetric flask. Make up to the volume with methanol. Filter this standard solution through 0.45 \(\mu \)m filter.

B.3.3.2 Sample preparation

Weigh accurately about 1.0 g of product, dissolve in methanol and make up to 100 mL in a volumetric flask with methanol. Filter this sample solution through 0.45 \(\mu \)m filter.
B.3.3.3 HPLC conditions

The HPLC conditions include the following:

a) Detector wavelength: 280 nm;

b) Column temperature: 35 ºC;

c) Flow rate: 1.0 mL/min; and

d) Injection volume: 10 µL.

Prepare the standard solution and the sample solution at the same time. Inject the standard solution three times and calculate the average of each ingredients peak count. Inject 10 µg the sample solution and determine each ingredients percentage by the calculation shown.

B.3.4 Calculations

The TCN and TCC shall be expressed as follows:

\[
TCN, \text{ percent by mass} = \frac{(M_s \times A_r \times F)}{(A_s \times M_t \times 100)}
\]

\[
TCC, \text{ percent by mass} = \frac{(M_s \times A_r \times F)}{(A_s \times M_t \times 100)}
\]

where

- \(A_r\) is the peak area of the test sample;
- \(A_s\) is the averaged peak area of the standard;
- \(F\) is the purity, expressed as percent, of the standard;
- \(M_s\) is the mass, in grams, of the standard; and
- \(M_t\) is the mass, in grams, of the test sample.

NOTE Both TCC and TCN are photosensitive, hence standards should be freshly prepared.
Annex C
(normative)

Determination of chloroaniline

C.1 Principle
The chloroanilines are extracted from soap with dimethyl sulfoxide and diazotized with nitrous acid. The reaction products are then coupled with N-1-(naphthyl) ethylenediamine hydrochloride to produce coloured compounds which are estimated spectrophotometrically.

C.2 Safety precautions
Dimethyl sulfoxide (DMSO) is readily absorbed into the skin. Inhalation or skin penetration must be avoided. DMSO should never be pipetted using mouth. Always use pipette bulb. The standard chloroanilines and N-1-(naphthyl)-ethylenediamine hydrochloride shall not be allowed to come into contact with the skin. If they should, then wash the contaminated parts thoroughly with soap and water.

A supply of diluted sodium hypochlorite should be at hand at all times to deal with accidental spillages of chloroaniline solution. Spillage on laboratory surface should be treated immediately with the sodium hypochlorite solution, followed by water.

C.3 Reagents
C.3.1 Dimethyl Sulphoxide (DMSO), AR grade
C.3.2 Hydrochloric acid, concentrated (specific gravity, 1.18)
C.3.3 Sodium nitrite, 0.4 % w/v analytical grade, freshly prepared (aqueous)
C.3.4 Ammonium sulphamate, 2 % w/v solution freshly prepared (aqueous)
C.3.5 N-1-(naphthyl) ethylene, 0.1 % w/v solution diamine hydrochloride freshly prepared (aqueous)
C.3.6 n-Butanol, AR grade
C.3.7 Sand, acid purified 40 - 100 micron mesh
C.3.8 Solvent mixture comprising:
- DMSO 5 volumes
- n-Butanol 2 volumes
- Distilled water 2 volumes
- Hydrochloric acid 1 volume
Mix n-butanol, water and HCl. Cool the mixture and add DMSO.
C.3.9 4-Chloroaniline and 3, 4-Dichloroaniline, AR grade
C.4 Apparatus

C.4.1 Spectrophotometer, suitable for use at 554 nm

C.4.2 Cuvettes, glass (matched pair) 10 mm

C.4.3 Water bath, thermostatically controlled at 25 °C

C.4.4 Stopwatch

C.4.5 Standard laboratory glassware

C.4.6 Filter Paper, Whatman No. 541

C.5 Procedure

C.5.1 Dissolve 0.349 8 g of 3,4-dichloroaniline and 0.2753 g of 4-chloroaniline in solvent mixture (see C.3.8) in a 250 mL amber volumetric flask.

Dilute to mark with solvent mixture [1 mL is 2.5 mg mixed chloroanilines (stock solution)].

C.5.2 Dilute this stock solution with solvent mixture as given below:

a) take 5 mL of stock solution and dilute it to 250 mL with solvent mixture (1 mL = 50 µg mixed chloroanilines); and

b) take 5 mL of the above solution [see (a)] and further dilute to 250 mL with solvent mixture. [1 mL = 1 µg mixed chloroanilines].

Use this solution for preparation of calibration curve.

Transfer using a burette 0, 1 mL, 2 mL, 5 mL, 10 mL, 20 mL, 40 mL into 50 mL amber volumetric flasks.

C.5.3 From a burette, add sufficient solvent mixture to make total volume to 40-mL in each flask. The flasks are incubated in a water bath at 25 °C for 20 min: After exactly 20 min, add 2-mL of reagent (see C.3.3) into each flask and return them to the water bath for exactly 10 min (measure with a stop watch).

Then add 2 mL of reagent (see C.3.4) into each flask and return them to the water bath for exactly 10 min. Swirl the flask occasionally.

Then add 2 mL of reagent (see C.3.5) into each flask and remove them from the water bath. Dilute to volume with distilled water, mix and allow to stand for 30 min. Measure absorbance at 554 nm against the blank solution as prepared in C.5.4.

C.5.4 In preparing the blank solution, take 40 mL of solvent mixture in a 50 mL amber volumetric flask. Incubate the flask in a water bath at 25 °C for 20 min. After exactly 20 min, add 2 mL of reagent (see C.3.3) into the flask and return it to the water bath for exactly 10 min. Then add 2 mL of reagent (see C.3.4) into the flask and return it to the water bath for exactly 10 min (swirl the flask occasionally). Then add 2 mL of reagent (see C.3.5) into the flask and remove it from the water bath. Dilute to volume with distilled water, mix and allow to stand for 30 min. Use this blank solution for preparation of calibration curve only.

C.5.5 Prepare a graph by plotting weight (µg) of chloroanilines contained in each 50 mL-flask against absorbance. The linear calibration will pass through the origin/or determine the average absorbance (AA) of 1 µg of mixed chloroanilines by dividing sum of absorbances of all different aliquots of the standard by sum of µg of chloroanilines in all different aliquots of standard.
C.6 Determination of chloroanilines

C.6.1 Weigh to the nearest mg 3.0 g - 15 g of finely grated soap and add 10.0 g - 15.0 g of acid purified sand. Transfer quantitatively the sample and the sand into a mortar and grind the mixture thoroughly with a pestle to give a homogenous mass. Transfer the mass to a previously weighed 250-mL flat bottom flask quantitatively and reweigh. Add DMSO (100 mL), stopper firmly and attach the flask to an automatic shaker. Shake for 1 h. Filter the DMSO extract through Whatman No. 541 into a 250 mL amber volumetric flask. Wash the flask and filter paper with small aliquots of DMSO. Allow the filtrate to drain completely, dilute to volume with DMSO and mix. Transfer 20 mL DMSO extract into a 50-mL amber volumetric flask. Add 20 mL of solvent mixture. The flask is incubated in a water bath at 25 °C for 20 min. After exactly 20 min, add 2 mL of reagent (see C.3.3) into the flask and return it to the water bath for exactly 10 min (measure with a stop watch). Then add 2 mL of reagent (see C.3.4) into the flask and return it to the water bath for exactly 10 min (swirl the flask occasionally). Then add 2 mL of reagent (see C.3.5) into the flask and remove it from the water bath. Dilute to volume with distilled water, mix and allow to stand for 30 min. Read the absorbance at 554 nm against blank (prepared as below).

C.6.2 Prepare the blank solution by mixing 20 mL of DMSO extract of sample and 20 mL of solvent mixture in a 50 mL amber volumetric flask. Incubate the flask in a water bath at 25 °C for 20 min. After exactly 20 min, add 2 mL of distilled water into the flask and return it to the water bath for exactly 10 min. Then add 2 mL of reagent (see C.3.4) into the flask and return it to the water bath for exactly 10 min (swirl the flask occasionally). Then add 2 mL of reagent (see C.3.5) into the flask and remove it from the water bath. Dilute to volume with distilled water, mix and allow to stand for 30 min. Use this solution as a blank for reading sample only.

C.6.3 Deduce the amount of chloroanilines (µg) from the calibration graph curve.

NOTE The determination should be completed in one day.

C.7 Calculations

Determine the amount of mixed chloroanilines in the aliquot of test solution from the calibration graph.

\[
\text{Chloroaniline content (in ppm) } = \frac{250(M + M_1)M_3}{20M_2M}
\]

where

- \(M \) is the mass, in grams, of soap;
- \(M_1 \) is the mass, in grams, of sand;
- \(M_2 \) is the mass, in grams, of soap and sand transferred to the flask; and
- \(M_3 \) is the mass, in micrograms, of mixed chloroanilines found from calibration graph/or it can be calculated as given below:

\[
M_3 = \frac{\text{Mass of the sample}}{\text{Average absorbance of 1 µg mixed chloroanilines (AA)}}
\]

where

\[
AA = \frac{\text{Sum of the OD of the standards}}{\text{Sum of concentration of standard chloroanilines in µg}}
\]

© EAC 2013 – All rights reserved
Weight of soap actually used, in g = \frac{M_2 M}{(M + M_1)}
Annex D
(normative)

Sampling

D.1 Procedure

D.1.1 In a single consignment, all packages (cartons) containing toilet soap cakes drawn from the same batch of production shall constitute a lot. For ascertaining the conformity of the lot to the requirements of this standard, tests shall be carried out on each lot separately. The number of packages to be selected for drawing the sample shall be in accordance with Table D.1.

Table D.1 — Scale of sampling

<table>
<thead>
<tr>
<th>Number of packages (cartons) in the lot</th>
<th>Number of packages (cartons) to be selected</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 to 15</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16 to 40</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>41 to 65</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>66 to 110</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>111 and above</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

D.1.2 The packages shall be selected at random, using tables of random numbers. If these are not available, the following procedure shall be applied:

Starting from any package, count all the packages in one order as 1, 2, 3..., \(N \), selecting every \(k \)th package, where \(k \) is the integral part of \(N / n \).

D.1.3 From each package thus selected, draw at random an equal number of cakes so as to obtain a total mass of at least 2 kg.

D.2 Preparation of test samples

D.2.1 Composite sample

Weigh each cake separately (including any material that may have adhered to the wrapper), and calculate the average mass. Cut each of the remaining cakes into eight parts by means of three cuts at right angles to each other through the middle. Grate finely the whole of two diagonally opposite eighths of each specimen. Mix the gratings and place in a clean, dry, airtight glass container.

D.2.2 Samples for testing

Immediately after preparation of composite sample (D.2.1), take at one time all test samples required for the tests in 4.2. Weigh out the test sample required for determination of free alkali or acid content, and use it immediately.